Пеноплекс вреден ли для здоровья: Пеноплекс и его вред для здоровья при внутренней отделке

Пеноплекс вреден ли для здоровья: Пеноплекс и его вред для здоровья при внутренней отделке

Содержание

Пенопласт как утеплитель — насколько вреден?

Давайте разберемся, можно ли применять пенопласт как утеплитель.

Споры на тему «вреден ли пенопласт как утеплитель» не утихают с того момента, как появились адекватные заменители этому материалу в частном строительстве.

Заметьте, о том, что пенопласт вреден как утеплитель, говорят все. Но при этом думают об этом только хозяева и застройщики частных домов. В том же многоэтажном строительстве пенопласт как утеплитель используют в огромных объемах. Каждая панельная высотка имеет от 50 до 100 миллиметров наружного утепления самым обыкновенным ПСБ, который располагают между бетоном и наружным слоем – кирпичом или штукатуркой.

Так может, пенопласт не вреден? Может зря его хают, ведь посмотрите — строительные организации его используют для строительства многоэтажных домов.

Давайте разберемся.

Какие свойства пенопласта вредны для здоровья

Чем пенопласт вреден, какие его свойства не позволяют ему считаться «честным» утеплителем?

 

  • Во-первых, это то, что пенопласт горюч. Даже те модификации пенополистирола, которые носят литеру «С», что значит «самозатухающий» при наших практических тестах полыхали ярким пламенем и давали черный жирный дым. То есть, пенопласт горит. И горит очень хорошо. Достаточно его поджечь и остановить горение очень сложно. Особенно если присутствует небольшой свознячок – это значит, что зона горения получает постоянный приток кислорода.
  • Во-вторых, при горении пенопласт выделяет яд. Тот самый черный жирный дым, о котором мы упоминали выше, содержит в себе токсичные вещества, смертельно опасные для человека.
  • И, в-третьих, даже если пенопласт не горит, то он сам по себе выделяет бесцветный газ – стирол. Эмиссия стирола наиболее сильна сразу после выпуска готового продукта и затем, с течением времени, ослабевает.

Сразу после производства пенопласт выделяет стирол

Зачем же тогда выпускают пенопласт, если он настолько опасен? Ну, во-первых, раньше все свойства этого продукта были неизвестны. А во-вторых, есть некоторые области, в которых применение пенопласта как утеплителя оправдано.

Где можно использовать пенопласт

Во-первых, там, где он не сможет гореть. То есть там, где не будет свободного доступа к утеплителю кислорода и открытого огня. Если вы планируете использовать при строительстве дома систему мокрого фасада, то пенопласт с маркой ПСБ-С то, что вам нужно.

Используете систему «мокрый фасад» — можете применять пенопласт как утеплитель

Во-вторых, там, где к нему не будет доступа людей. То есть на внешних сторонах стен жилых зданий, при утеплении технических сооружений, при утеплении вспомогательных построек.

В-третьих, некоторые виды пенополистирола, например, пеноплекс, можно использовать для утепления подвалов, цокольных этажей зданий и утепления отмосток.

Получается, что пенопласт вреден, хотя и может быть использован как утеплитель в ограниченном количестве случаев при строительстве частных домов.

 

Поделиться с друзьями:

Вреден ли для здоровья пенопласт, пенополистирол и пеноплекс Отравление.

ру

Пенопласт в последнее время нашел очень широкое применение. Если раньше его использовали только для упаковки хрупких товаров, то сейчас при помощи этого материала утепляют жилища. Пенопласт крепят как на внутренние, так и наружные стены. Этот стройматериал имеет хорошую теплоизоляцию, недорого стоит и легко монтируется. Однако немногие люди могут ответить на вопрос – вреден ли пенопласт для здоровья? А на самом деле к изучению этой информации нужно подходить еще до покупки стройматериала, а уж тем более до его применения.

Общая характеристика материала

Пенопласт – это белое пористое вещество, которое состоит из множества отдельных крупинок. Его получают путем вспенивания пластической массы, причем основной объем этому материалу придает газ, за счет чего его плотность ниже, чем плотность исходного полимера. Этим объясняются высокие теплоизоляционные свойства и хорошая звукоизоляция.

В зависимости от состава исходного сырья и метода его обработки получают материал с разной плотностью, стойкостью к механическим воздействиям и разного предназначения. В зависимости от этих факторов подбирают стройматериал для той или иной цели.

Достоинства пенопласта

У пенопласта есть масса положительных сторон, что позволяет ему оставаться наиболее популярным утеплителем уже много лет:

  • Пористая структура этого стройматериала значительно понижает теплопроводность.
  • Этот материал отлично держит свою форму, что не свойственно утеплителям из этой ценовой группы.
  • Он практически весь состоит из воздуха, поэтому плохо горит.
  • Для изготовления этого утеплителя применяют минимум веществ из группы стиролов, что говорит об относительной экологичности.
  • Срок эксплуатации материала более 50 лет, что подтверждается сертификатами качества. При правильном монтаже его характеристики не меняются на протяжении всего срока эксплуатации.

К положительным сторонам можно отнести также невысокую цену и легкость монтажа. Для укладки пенопласта на стены не обязательно иметь специальные навыки, особенно если речь идет о частном доме или первом этаже многоэтажки.

Пенопласт может впитывать воду, при этом его характеристики постепенно теряются. Чтобы этого не произошло, утеплитель нужно защищать от вредного воздействия окружающей среды.

Какие вредные вещества выделяет пенопласт

Владельцы квартир часто утепляют свои жилища полистиролом или пенопластом, причем если жители нижних этажей утепляют квартиры снаружи, то живущие на верхних этажах монтируют пенопласт внутри помещения.

Чтобы понять, насколько вреден пенопласт для здоровья человека, нужно разобраться, какие же вещества в него входят. В составе строительного материала есть такие вещества:

  1. Стирол – опасное для человека вещество. Оно выбрасывается в атмосферу еще около 20 лет, после закрепления утеплителя. Особый вред от него ощущается в том случае, если температура воздуха выше +25 градусов.
  2. Фенол – химическое соединение в пенопласте, что выбрасывается в воздух под действием прямых лучей солнца или при температуре свыше +20 градусов.
  3. Формальдегид – газообразное вещество, которое является достаточно токсичным. Выделяется при повышенных температурах.

Необходимо помнить, что все вещества, которые выделяются пенопластом, имеют особенность накапливаться в организме и тем самым ухудшать здоровье жильцов.

Перед выбором утеплителя стоит взвесить все достоинства и недостатки. С одной стороны, на чаше весов удобство монтажа, низкая цена и легкость отделки, а с другой – здоровье жильцов.

Так есть ли вред от пенопласта

При горении пенопласта выделяется вредный дым, который представляет большую опасность для людей. Для жителей домов, которые утеплены пенопластом, увеличивается опасность смертельного отравления токсинами при пожаре. Если не соблюдалась технология монтажа пенопласта, то смещается точка росы, что в результате приводит к образованию плесени на стенах. Это небезопасно для любого человека, вне зависимости от возраста. Если санитарные условия в жилище не соблюдаются, то это грозит грызунами, которые прекрасно размножаются и живут в утеплителе.

Официально опубликованных данных о вреде пенопласта для человека нет, этот материал с успехом применяют даже для упаковки пищевых продуктов. Производители такого стройматериала в один голос утверждают, что за несколько десятков лет, которые человек использует пенопласт в качестве утеплителя стен, не было зафиксировано ни одного случая болезней, которые были спровоцированы этим веществом.

Однако, несмотря на недоказанность случаев отравления, среди потребителей продолжают распространяться слухи, что полистирол оказывает пагубное воздействие на здоровье человека, постоянно выделяя в малых объемах вредные вещества. Вполне может быть, что на рынке строительных товаров есть продукция недобросовестных производителей, которые при выпуске материала не придерживаются технологии. Такой пенопласт действительно несет угрозу здоровью людей.

Пенополистирол, который изготовлен по всем нормам и правилам, не вреден для здоровья человека. Вероятнее всего, слухи о высокой токсичности распускают конкуренты, которые производят иные виды утеплителей.

Как минимизировать вред от пенопласта

Многие люди, особенно старшего поколения, верят любой информации, которую преподносят в средствах массовой информации. Подчас убедить своих родителей в том, что от пенопласта практически нет вреда, непросто. В этом случае, скорее, для собственного успокоения, стоит придерживаться таких правил:

  • Не использовать строительный материал для утепления стен внутри квартиры или дома.
  • При утеплении жилища монтировать утеплитель только на наружных стенах, при этом обязательно делать вентиляцию.
  • Для утепления потолка желательно класть слой полистирола со стороны чердака, но лишь при условии, что он нежилой. На балконе лучше тоже не утеплять поверхности пенопластом, а отдать предпочтение минеральной вате или инновационному материалу пеноплексу.
  • Не вестись на слишком низкую цену материала. Вполне может быть, что такой пенопласт был произведен где-то на задворках, без соблюдения технологии. У всех продавцов должен быть сертификат качества, который они по требованию предъявляют покупателю.
  • Этот материал можно использовать только по назначению, то есть для наружного утепления домов и квартир. Запрещается из пенопласта делать детские домики для игр.

Часто возникает вопрос, а вреден ли этот материал для животных? Полистирол часто используют для утепления курятников, но куры любят его клевать. Опасности в этом почти нет, так как век кур короткий и вредные вещества просто не успевают накопиться в организме.

Если хочется качественно утеплить свое жилище, то не стоит экономить. Покупать материалы стоит в специализированных точках продажи.

А можно ли пенопластом отравиться

Отравиться можно всем, даже привычными для человека продуктами. Трудно представить себе взрослого человека или ребенка, которые будут давиться, но есть пенопласт. Отравление в этом случае может быть при вдыхании вредного дыма, который образуется при высоких температурах. Качественный полистирол относится к самозатухающим материалам, однако рядом с ним часто оказываются другие вещества, которые хорошо горят, поэтому оплавление пенопласта неизбежно, с выделением вредных веществ.

В качестве первой помощи рекомендуется выполнить такие манипуляции:

  1. Убрать пострадавшего из зоны горения стройматериала.
  2. Расстегнуть и устранить все сдавливающие предметы одежды – пояса, галстуки и рубашки.
  3. Вынести больного на улицу или обеспечить приток кислорода в помещение.

Если у пострадавшего отсутствует дыхание или нарушена работа сердца, то нужно провести реанимационные действия. После оказания первой помощи обязательно вызывают бригаду скорой помощи, которая заберет больного для дальнейшего лечения в стационар.

Потенциальная токсичность частиц микропластика полистирола

1. Law KL, Thompson RC. Микропластик в морях. Наука. 2014; 345:144–145. doi: 10.1126/science.1254065. [PubMed] [CrossRef] [Google Scholar]

2. Довернь П. Сила экологических норм: морское пластиковое загрязнение и политика микробусин. Экологическая политика. 2018; 27: 579–597. doi: 10.1080/09644016.2018.1449090. [CrossRef] [Google Scholar]

3. Fendall LS, Sewell MA. Умывание лица способствует загрязнению морской среды: микропластик в очищающих средствах для лица. Бюллетень загрязнения морской среды. 2009 г.;58:1225–1228. doi: 10.1016/j.marpolbul.2009.04.025. [PubMed] [CrossRef] [Google Scholar]

4. Napper IE, Bakir A, Rowland SJ, Thompson RC. Характеристика, количество и сорбционные свойства микропластика, извлеченного из косметических средств. Бюллетень о загрязнении морской среды. 2015;99:178–185. doi: 10.1016/j.marpolbul.2015.07.029. [PubMed] [CrossRef] [Google Scholar]

5. Грегори М.Р. Пластиковые «скрубберы» в моющих средствах для рук: обнаружен еще один (и второстепенный) источник загрязнения морской среды. Бюллетень загрязнения морской среды. 1996;32:867–871. doi: 10.1016/S0025-326X(96)00047-1. [CrossRef] [Google Scholar]

6. Шарма С., Чаттерджи С. Загрязнение микропластиком, угроза морской экосистеме и здоровью человека: краткий обзор. Наука об окружающей среде и исследование загрязнения. 2017;24:21530–21547. doi: 10.1007/s11356-017-9910-8. [PubMed] [CrossRef] [Google Scholar]

7. Shi D, et al. Композитные наносферы из флуоресцентного полистирола и Fe3O4 для визуализации in vivo и гипертермии. Передовые материалы. 2009;21:2170–2173. doi: 10.1002/adma.200803159. [CrossRef] [Google Scholar]

8. Ryan PG, Moore CJ, van Franeker JA, Moloney CL. Мониторинг обилия пластикового мусора в морской среде. Философские труды Лондонского королевского общества B: Биологические науки. 2009; 364:1999–2012. doi: 10.1098/rstb.2008.0207. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

9. Thompson R, et al. Новые направления в пластиковом мусоре. Наука. 2005; 310:1117–1117. doi: 10.1126/science.310.5751.1117b. [PubMed] [CrossRef] [Академия Google]

10. Чеунг П.К., Фок Л. Доказательства наличия микрогранул от продуктов личной гигиены, загрязняющих море. Мар Поллют. Бык. 2016; 109: 582–585. doi: 10.1016/j.marpolbul.2016.05.046. [PubMed] [CrossRef] [Google Scholar]

11. Gewert B, Plassmann MM, MacLeod M. Пути деградации пластиковых полимеров, плавающих в морской среде. Наука об окружающей среде: процессы и воздействия. 2015;17:1513–1521. [PubMed] [Google Scholar]

12. Андрей А.Л. Микропластик в морской среде. Бюллетень загрязнения морской среды. 2011;62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030. [PubMed] [CrossRef] [Google Scholar]

13. Ламберт С., Вагнер М. Характеристика нанопластиков во время деградации полистирола. Хемосфера. 2016; 145: 265–268. doi: 10.1016/j.chemosphere.2015.11.078. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Танака К., Такада Х. Фрагменты микропластика и микрогранулы в пищеварительном тракте планктоноядных рыб из городских прибрежных вод. Научные отчеты. 2016;6:34351. doi: 10.1038/srep34351. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

15. Сантилло Д., Миллер К., Джонстон П. Микропластик как загрязнитель коммерчески важных видов морепродуктов. Комплексная экологическая оценка и управление. 2017;13:516–521. doi: 10.1002/ieam.1909. [PubMed] [CrossRef] [Google Scholar]

16. Smith M, Love DC, Rochman CM, Neff RA. Микропластик в морепродуктах и ​​последствия для здоровья человека. Текущие отчеты о состоянии окружающей среды. 2018;5:375–386. doi: 10.1007/s40572-018-0206-z. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

17. Олсен С.О. Понимание взаимосвязи между возрастом и потреблением морепродуктов: посредническая роль отношения, заботы о здоровье и удобства. Качество еды и предпочтения. 2003; 14: 199–209. doi: 10.1016/S0950-3293(02)00055-1. [CrossRef] [Google Scholar]

18. Van Cauwenberghe L, Janssen CR. Микропластик в двустворчатых моллюсках, выращенных для потребления человеком. Загрязнение окружающей среды. 2014; 193:65–70. doi: 10.1016/j.envpol.2014.06.010. [PubMed] [CrossRef] [Академия Google]

19. Рохман С.М. и соавт. Антропогенный мусор в морепродуктах: пластиковые отходы и волокна текстиля в рыбе и двустворчатых моллюсках, продаваемых для потребления человеком. Научные отчеты. 2015;5:14340. doi: 10.1038/srep14340. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

20. Setälä O, Fleming-Lehtinen V, Lehtiniemi M. Проглатывание и перенос микропластика в планктонной пищевой сети. Загрязнение окружающей среды. 2014; 185:77–83. doi: 10.1016/j.envpol.2013.10.013. [PubMed] [CrossRef] [Академия Google]

21. Сторк Ф. Р., Кулс С. А. и Ринк-Пфайффер С. Микропластик в пресноводных ресурсах. Global Water Research Coalition, Стерлинг, Южная Австралия, Австралия (2015).

22. Брук С., Форд А.Т. Хроническое употребление микрочастиц полистирола в малых дозах не влияет на потребление пищи и рост литоральной амфиподы Echinogammarus marinus? Загрязнение окружающей среды. 2018; 233:1125–1130. doi: 10.1016/j.envpol.2017.10.015. [PubMed] [CrossRef] [Академия Google]

23. Sussarellu R, et al. На воспроизводство устриц влияет воздействие микропластика из полистирола. Труды Национальной академии наук. 2016;113:2430–2435. doi: 10.1073/pnas.151

13. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

24. Шимански Д., Гольдбек С., Хампф Х.-У., Фюрст П. Анализ микропластика в воде с помощью микрорамановской спектроскопии: попадание частиц пластика из разных упаковок в минеральная вода. Исследования воды. 2018;129:154–162. doi: 10.1016/j.waters.2017.11.011. [PubMed] [CrossRef] [Академия Google]

25. Карр С.А., Лю Дж., Тесоро АГ. Транспорт и судьба частиц микропластика на очистных сооружениях. Исследование воды. 2016;91:174–182. doi: 10.1016/j.waters.2016.01.002. [PubMed] [CrossRef] [Google Scholar]

26. Phuong NN, et al. Есть ли соответствие между микропластиками, обнаруженными в полевых условиях, и теми, которые используются в лабораторных экспериментах? Загрязнение окружающей среды. 2016; 211:111–123. doi: 10.1016/j.envpol. 2015.12.035. [PubMed] [CrossRef] [Google Scholar]

27. Jeong C-B, et al. Токсичность, зависящая от размера микропластика, индукция окислительного стресса и активация p-JNK и p-p38 у моногононтных коловраток (Brachionus koreanus) Наука и технологии в области окружающей среды. 2016;50:8849–8857. doi: 10.1021/acs.est.6b01441. [PubMed] [CrossRef] [Google Scholar]

28. Алими О.С., Фарнер Бударц Дж., Эрнандес Л.М., Туфенкджи Н. Микропластики и нанопластики в водной среде: агрегация, осаждение и усиленный перенос загрязняющих веществ. Экологические науки и технологии. 2018;52:1704–1724. doi: 10.1021/acs.est.7b05559. [PubMed] [CrossRef] [Google Scholar]

29. Cai L, et al. Влияние неорганических ионов и природного органического вещества на агрегацию нанопластиков. Хемосфера. 2018;197:142–151. doi: 10.1016/j.chemosphere.2018.01.052. [PubMed] [CrossRef] [Google Scholar]

30. Mattsson K, et al. Повреждения головного мозга и нарушения поведения у рыб, вызванные пластиковыми наночастицами, доставляемыми по пищевой цепи. Научные отчеты. 2017;7:1–7. doi: 10.1038/s41598-017-10813-0. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

31. Ревель М., Шатель А., Мунейрак С. Микро (нано) пластики: угроза здоровью человека? Текущее мнение в области науки об окружающей среде и здоровье. 2018;1:17–23. doi: 10.1016/j.coesh.2017.10.003. [Перекрестная ссылка] [Академия Google]

32. Сасс, В., Дрейер, Х.-П. & Seifert, J. Быстрое всасывание мелких частиц в кишечнике. Американский журнал гастроэнтерологии 85 (1990). [PubMed]

33. Jin Y, et al. Полистироловые микропластики вызывают дисбактериоз микробиоты и воспаление в кишечнике взрослых рыбок данио. Окружающая среда. Загрязн. 2018; 235:322–329. doi: 10.1016/j.envpol.2017.12.088. [PubMed] [CrossRef] [Google Scholar]

34. Prata JC. Микропластик в воздухе: последствия для здоровья человека? Окружающая среда. Загрязн. 2018; 234:115–126. doi: 10.1016/j.envpol.2017.11.043. [PubMed] [CrossRef] [Академия Google]

35. Коул М., Линдек П., Файлман Э., Халсбанд С., Галлоуэй Т.С. Влияние полистироловых микропластиков на питание, функцию и плодовитость морских копепод Calanus helgolandicus. Окружающая среда. науч. Технол. 2015;49:1130–1137. doi: 10.1021/es504525u. [PubMed] [CrossRef] [Google Scholar]

36. Тодд Г., Уолерс Д. и Цитра М. Агентство токсичных веществ и регистра заболеваний. Атланта, Джорджия (2003 г.).

37. Лесли Х. Обзор микропластика в косметике. Институт экологических исследований [ИВМ] 4 (2014).

38. Galloway, TS in Морской антропогенный мусор 343-366 (Springer, Cham (2015).

39. Pivokonsky M, et al. Присутствие микропластика в сырой и очищенной питьевой воде. Science of The Total Environment. 2018;643:1644–1651.doi: 10.1016/j.scitotenv.2018.08.102. [PubMed] [CrossRef] [Google Scholar]

антропогенный мусор . (Springer (2015).

41. Schellenberg, J. Синдиотактический полистирол: синтез, характеристика, обработка и применение . (John Wiley & Sons (2009).

42. Lee K-W, Shim WJ, Kwon OY, Канг Дж. Х. Зависимые от размера эффекты частиц микрополистирола у морских копепод Tigriopus japonicus. Экологические науки и технологии. 2013;47:11278–11283. doi: 10.1021/es401932b. [PubMed] [CrossRef] [Google Scholar]

43 , Gambardella C, et al. Эффекты полистироловых микрогранул у морских планктонных ракообразных. Экотоксикология и экологическая безопасность. 2017; 145: 250–257. doi: 10.1016/j.ecoenv.2017.07.036. ]

44. Чубаренко И., Багаев А., Зобков М., Есюкова Е. О некоторых физических и динамических свойствах частиц микропластика в морской среде. Бюллетень загрязнения морской среды. 2016; 108:105–112. doi: 10.1016/j.marpolbul.2016.04.048. [PubMed] [CrossRef] [Google Scholar]

45. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Биоразлагаемые полимерные наночастицы как средства доставки лекарств. J. Контролируемое высвобождение. 2001; 70:1–20. doi: 10.1016/S0168-3659(00)00339-4. [PubMed] [CrossRef] [Академия Google]

46. Hayashi S, Kumamoto Y, Suzuki T, Hirai T. Визуализация с помощью частиц полистирольного латекса. J. Коллоидный интерфейс Sci. 1991; 144: 538–547. doi: 10.1016/0021-9797(91)90419-9. [CrossRef] [Google Scholar]

47. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Механизмы нанотоксичности: образование активных форм кислорода. Журнал анализа пищевых продуктов и лекарств. 2014;22:64–75. doi: 10.1016/j.jfda.2014.01.005. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

48. Min Y-D, et al. Кверцетин ингибирует экспрессию воспалительных цитокинов за счет ослабления NF-κB и p38 MAPK в линии тучных клеток человека HMC-1. Воспаление рез. 2007; 56: 210–215. doi: 10.1007/s00011-007-6172-9. [PubMed] [CrossRef] [Google Scholar]

49. Хван Дж., Чой Д., Хан С., Чой Дж., Хонг Дж. Оценка токсичности полипропиленовых микропластиков в клетках человеческого происхождения. Наука о полной окружающей среде. 2019; 684: 657–669. doi: 10.1016/j.scitotenv.2019.05.071. [PubMed] [CrossRef] [Google Scholar]

50. Koelmans, A.A. et al . Микропластик в пресной и питьевой воде: критический обзор и оценка качества данных. Исследование воды (2019). [Бесплатная статья PMC] [PubMed]

51. Мейсон С.А., Уэлч В.Г., Нератко Дж. Загрязнение синтетическими полимерами бутилированной воды. Границы в химии. 2018;6:407. doi: 10.3389/fchem.2018.00407. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

52. Conkle JL, Del Valle CDB, Turner JW. Не недооцениваем ли мы загрязнение микропластиком водной среды? Управление окружением. 2018;61:1–8. doi: 10.1007/s00267-017-0947-8. [PubMed] [CrossRef] [Google Scholar]

53. Ravit B, et al. Микропластик в городских пресных водах Нью-Джерси: распространение, химическая идентификация и биологические эффекты. Цели науки об окружающей среде. 2017;4:809–826. doi: 10.3934/environsci.2017.6.809. [CrossRef] [Google Scholar]

54. Гольдштейн Дж.Л., Андерсон Р.Г., Браун М.С. Покрытые ямки, покрытые везикулы и рецептор-опосредованный эндоцитоз. Природа. 1979; 279:679. дои: 10.1038/279679a0. [PubMed] [CrossRef] [Google Scholar]

55. Aderem A, Underhill DM. Механизмы фагоцитоза макрофагов. Анну. Преподобный Иммунол. 1999; 17: 593–623. doi: 10.1146/annurev.immunol.17.1.593. [PubMed] [CrossRef] [Google Scholar]

56. Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Токсичность катионных полистирольных наносфер зависит от клеточно-специфических путей эндоцитарного и митохондриального повреждения. АКС нано. 2007; 2:85–9.6. doi: 10.1021/nn700256c. [PubMed] [CrossRef] [Google Scholar]

57. He C, Hu Y, Yin L, Tang C, Yin C. Влияние размера частиц и поверхностного заряда на клеточное поглощение и биораспределение полимерных наночастиц. Биоматериалы. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. [PubMed] [CrossRef] [Google Scholar]

58. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. Тестирование цитотоксичности поликатионов in vitro : влияние структуры полимера на жизнеспособность клеток и гемолиз. Биоматериалы. 2003; 24:1121–1131. дои: 10.1016/S0142-9612(02)00445-3. [PubMed] [CrossRef] [Google Scholar]

59. Dodge JT, Mitchell C, Hanahan DJ. Получение и химическая характеристика бесгемоглобиновых теней эритроцитов человека. Архив биохимии и биофизики. 1963; 100: 119–130. doi: 10.1016/0003-9861(63)

-0. [PubMed] [CrossRef] [Google Scholar]

60. Sayes CM, Reed KL, Warheit DB. Оценка токсичности мелких частиц и наночастиц: сравнение измерений in vitro с профилями легочной токсичности in vivo . Токсикол. науч. 2007;97: 163–180. doi: 10.1093/toxsci/kfm018. [PubMed] [CrossRef] [Google Scholar]

61. Chen HT, Neerman MF, Parrish AR, Simanek EE. Цитотоксичность, гемолиз и острая токсичность in vivo дендримеров на основе меламина, кандидатов на доставку лекарств. Варенье. хим. соц. 2004; 126:10044–10048. doi: 10.1021/ja048548j. [PubMed] [CrossRef] [Google Scholar]

62. Blackshear P, Jr, et al. Сдвиг, взаимодействие со стенкой и гемолиз. АСАИО Дж. 1966; 12: 113–120. [PubMed] [Академия Google]

63. Чой Дж., Рейпа В., Хитчинс В.М., Геринг П.Л., Малинаускас Р.А. Физико-химическая характеристика и оценка гемолиза in vitro наночастиц серебра. Токсикол. науч. 2011; 123:133–143. doi: 10.1093/toxsci/kfr149. [PubMed] [CrossRef] [Google Scholar]

64. Lin Y-S, Haynes CL. Влияние размера наночастиц мезопористого кремнезема, упорядочения пор и целостности пор на гемолитическую активность. Варенье. хим. соц. 2010; 132:4834–4842. doi: 10.1021/ja910846q. [PubMed] [CrossRef] [Академия Google]

65. Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. Исследования легочной биопробы с наноразмерными частицами и частицами тонкого кварца у крыс: токсичность зависит не от размера частиц, а от характеристик поверхности. Токсикол. науч. 2006; 95: 270–280. doi: 10.1093/toxsci/kfl128. [PubMed] [CrossRef] [Google Scholar]

66. Naito K, Mizuguchi K, Nosé Y. Необходимость стандартизации индекса гемолиза. Искусственные органы. 1994; 18:7–10. doi: 10.1111/j.1525-1594.1994.tb03292.x. [PubMed] [CrossRef] [Академия Google]

67. Гревен А.-К. Наночастицы поликарбоната и полистирола действуют как стрессоры на врожденную иммунную систему толстоголовых гольянов (Pimephales promelas, Rafinesque 1820) , lmu, (2016). [PubMed]

68. Sun X, et al. Проглатывание микропластика естественными группами зоопланктона в северной части Южно-Китайского моря. Бюллетень загрязнения морской среды. 2017;115:217–224. doi: 10.1016/j.marpolbul.2016.12.004. [PubMed] [CrossRef] [Google Scholar]

69. Tosti A, Guerra L, Vincenzi C, Peluso AM. Профессиональные вредности кожи от синтетических пластмасс. Токсикология и гигиена труда. 1993;9:493–502. doi: 10.1177/074823379300

8. [PubMed] [CrossRef] [Google Scholar]

70. Льюис С.Дж., Хитон К.В. Еще раз о грубых продуктах (влияние инертных пластиковых частиц разного размера и формы на функцию кишечника) Dig. Дис. науч. 1999; 44: 744–748. doi: 10.1023/A:1026613909403. [PubMed] [CrossRef] [Google Scholar]

71. Von Moos N, Burkhardt-Holm P, Köhler A. Поглощение и воздействие микропластика на клетки и ткани голубой мидии Mytilus edulis L. после экспериментального воздействия. Окружающая среда. науч. Технол. 2012;46:11327–11335. doi: 10.1021/es302332w. [PubMed] [CrossRef] [Академия Google]

72. Prietl B, et al. Наноразмерные и микроразмерные частицы полистирола влияют на функцию фагоцитов. Клеточная биология и токсикология. 2014; 30:1–16. doi: 10.1007/s10565-013-9265-y. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

73. Nicolete R, dos Santos DF, Faccioli LH. Поглощение микро- или наночастиц PLGA макрофагами вызывает отчетливую in vitro воспалительную реакцию. Международная иммунофармакология. 2011; 11:1557–1563. doi: 10.1016/j.intimp.2011.05.014. [PubMed] [CrossRef] [Академия Google]

74. Делие Ф. Оценка поглощения нано- и микрочастиц желудочно-кишечным трактом. Расширенные обзоры доставки лекарств. 1998; 34: 221–233. doi: 10.1016/S0169-409X(98)00041-6. [PubMed] [CrossRef] [Google Scholar]

75. Флоренс А., Сактхивел Т., Тот И. Пероральное поглощение и транслокация полилизинового дендримера с липидной поверхностью. Журнал контролируемого выпуска. 2000; 65: 253–259. doi: 10.1016/S0168-3659(99)00237-0. [PubMed] [CrossRef] [Google Scholar]

76. McClean S, et al. Связывание и поглощение биоразлагаемых микро- и наночастиц поли-DL-лактида эпителием кишечника. евро . Дж. Фарм. науч. 1998; 6: 153–163. [PubMed] [Google Scholar]

77. Win KY, Feng S-S. Влияние размера частиц и поверхностного покрытия на клеточное поглощение полимерных наночастиц для пероральной доставки противоопухолевых препаратов. Биоматериалы. 2005; 26: 2713–2722. doi: 10.1016/j.biomaterials.2004.07.050. [PubMed] [CrossRef] [Google Scholar]

78. Аваад А., Накамура М., Ишимура К. Визуализация зависящего от размера поглощения и идентификация новых путей в мышиных пейеровых бляшках с использованием флуоресцентных кремнийорганических частиц. Наномед. нанотехнологии. биол. Мед. 2012; 8: 627–636. doi: 10.1016/j.nano.2011.08.009. [PubMed] [CrossRef] [Google Scholar]

79. Борнштейн С., Рутковски Х., Врезас И. Цитокины и стероидогенез. Мол. Клетка. Эндокринол. 2004; 215:135–141. doi: 10.1016/j.mce.2003.11.022. [PubMed] [CrossRef] [Google Scholar]

80. Feuerstein G, Liu T, Barone F. Цитокины, воспаление и повреждение головного мозга: роль фактора некроза опухоли-альфа. Цереброваскулярная. Мозговой метаб. Ред. 1994; 6: 341–360. [PubMed] [Google Scholar]

81. Nemeth E, et al. ИЛ-6 опосредует гипоферремию воспаления, индуцируя синтез гормона регуляции железа гепсидина. Журнал клинических исследований. 2004; 113:1271–1276. DOI: 10.1172/JCI200420945. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

82. де Ваал Малефит Р., Абрамс Дж., Беннетт Б., Фигдор К.Г., Де Врис Дж.Е. Интерлейкин 10 (ИЛ-10) ингибирует синтез цитокинов моноцитами человека: ауторегуляторная роль ИЛ-10, продуцируемого моноцитами. Дж. Эксп. Мед. 1991; 174:1209–1220. doi: 10.1084/jem.174.5.1209. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

83. Green T, Fisher J, Stone M, Wroblewski B, Ingham E. Частицы полиэтилена «критического размера» необходимы для индукции цитокинов с помощью макрофаги in vitro . Биоматериалы. 1998;19:2297–2302. doi: 10.1016/S0142-9612(98)00140-9. [PubMed] [CrossRef] [Google Scholar]

84. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Взаимодействие макрофагов и частиц: влияние размера, состава и площади поверхности. Дж. Биомед. Матер. Рез. 1994; 28:81–90. doi: 10.1002/jbm.820280111. [PubMed] [CrossRef] [Google Scholar]

85. Lu Y, et al. Поглощение и накопление полистироловых микропластиков у рыбок данио (Danio rerio) и токсическое воздействие на печень. Окружающая среда. науч. Технол. 2016;50:4054–4060. doi: 10.1021/acs.est.6b00183. [PubMed] [CrossRef] [Академия Google]

86. Тауфик М.С., БаАбдулла Х. Уровни миграции моностирола в наиболее уязвимых пищевых продуктах, обрабатываемых и хранящихся в контейнерах из полистирола, и их влияние на ежедневное потребление. Пакистанский журнал пищевых наук. 2014; 24:57–63. [Google Scholar]

87. Appendini P, Hotchkiss JH. Обзор антимикробной пищевой упаковки. Инновационная пищевая наука и новые технологии. 2002; 3: 113–126. doi: 10.1016/S1466-8564(02)00012-7. [CrossRef] [Google Scholar]

88. Кэссиди К., Эльяшив-Барад С. Пересмотренный коэффициент потребления FDA США для полистирола, используемого в приложениях, контактирующих с пищевыми продуктами. Пищевые добавки и примеси. 2007; 24:1026–1031. дои: 10.1080/02652030701313797. [PubMed] [CrossRef] [Google Scholar]

89. Froget S, et al. Производство медиатора заживления ран фибробластами кожи человека, выращенными в матрице коллаген-ГАГ, для восстановления кожи у людей. Евро. Цитокиновая сеть. 2003; 14:60–64. [PubMed] [Google Scholar]

90. Шайер Р.В. Метаболизм гистамина у различных видов. бр. Дж. Фармакол. Чемотер. 1956; 11: 472–473. doi: 10.1111/j.1476-5381.1956.tb00020.x. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

91. Steinhoff M, Steinhoff A, Homey B, Luger TA, Schneider SW. Роль сосудистой системы при атопическом дерматите. Дж. Аллергия Клин. Иммунол. 2006;118:190–197. doi: 10.1016/j.jaci.2006.04.025. [PubMed] [CrossRef] [Google Scholar]

92. Мекори Ю.А., Меткалф Д.Д. Тучные клетки врожденного иммунитета. Иммунол. 2000; 173:131–140. doi: 10.1034/j.1600-065X.2000.917305.x. [PubMed] [CrossRef] [Google Scholar]

93. Galli SJ, et al. Тучные клетки как «настраиваемые» эффекторные и иммунорегуляторные клетки: последние достижения. Анну. Преподобный Иммунол. 2005; 23: 749–786. doi: 10.1146/annurev.immunol.21.120601.141025. [PubMed] [CrossRef] [Академия Google]

94. Призм Г. Программное обеспечение Graphpad. Сан-Диего , Калифорния, США (1994).

95. Шнайдер К.А., Расбанд В.С., Элисейри К.В. NIH Image to ImageJ: 25 лет анализа изображений. Природные методы. 2012;9:671. doi: 10.1038/nmeth.2089. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

Напыляемая пеноизоляция — токсично ли это?

Когда люди спрашивают: «Является ли изоляция распыляемой пеной токсичной?», они обычно спрашивают о полиуретане. Исследования изоляции полиуретановой пены показали, что она оказывает неблагоприятное воздействие на здоровье, а химические вещества содержат высокий уровень токсичности.

Действительно, люди начинают обращать внимание на более экологичные решения для изоляции напыляемой пеной, такие как изоляция LogicFoam или переработанная изоляция, изготовленная из таких материалов, как овечья шерсть, газета или даже соевые бобы!

Но какова реальная история о токсичности распыляемой пены? Является ли это здоровым выбором изоляции для использования, и как она соотносится с другими традиционными изоляционными материалами на рынке? Мы слышим вас, и мы слышим, чтобы предоставить такие необходимые ответы, отделив факты от вымысла по всем аспектам безопасности распыляемой пены. Давай начнем!

Что такое изоляция из напыляемой пены?

Изоляция из напыляемой пены представляет собой смесь химикатов, которую вдувают водой в чердачное помещение с целью изоляции и герметизации имущества. Увеличиваясь до 100 раз по сравнению с первоначальным размером, он работает как идеальная альтернатива традиционным изоляциям, таким как стекловолокно, которое не обеспечивает такого же уровня воздухонепроницаемости.

Существует два основных типа изоляции из напыляемой пены: с открытыми порами и с закрытыми порами. Важно понимать различия между ними, поскольку они оба обеспечивают уникальные различия благодаря своей способности изолировать и предназначены для разных целей.

Вы можете найти вводящую в заблуждение информацию об обоих типах пены на многочисленных сайтах в Интернете, которые выдвигают множество противоречивых утверждений.

Однако важно помнить, что проблемы в основном возникают, когда неправильный продукт используется для неправильных приложений или когда попытка установки выполняется без предварительного опыта и надлежащего защитного оборудования.

LogicFoam похож на куртку Gortex, не пропускает ветер и водяной пар, благодаря чему достигается температура окружающей среды

Распыляемая пена с открытыми порами: обзор

Распыляемая пена LogicFoam с открытыми порами имеет очень легкую эластичную текстуру, которая прочно прилипает к поверхности, на которую наносится, без необходимости использования дополнительных клеев. Он распыляется или вводится в виде жидкости, расширяясь до 100 раз по сравнению с первоначальным размером при нанесении.

Разновидность LogicFoam LF-205, которую мы устанавливаем, одновременно решает две основные задачи: обеспечивает воздухонепроницаемый барьер, а также позволяет зданию дышать. необходимая функция для обеспечения возможности испарения паров влаги.

Думайте об этом как о куртке Gortex; он не пропускает ветер и водяной пар, в то же время гарантируя, что тело (дерево крыши) не потеет в процессе. Этот продукт также полностью аккредитован BBA, что свидетельствует о его пригодности как для старых домов, так и для новостроек.

Спрей-пена с закрытыми порами: обзор

Когда воздухопроницаемость для влаги не требуется, можно использовать разновидности пены с закрытыми порами. Ведущей разновидностью этого типа пенопласта является состав LogicFoam LF-10, который чаще всего используется для коммерческих применений, таких как склады и служебные помещения.

Сам продукт имеет сверхнизкое значение U-значения и наносится более тонкими слоями, чем эквиваленты пенопласта с открытыми порами. Не рекомендуется использовать пенопласт с закрытыми порами для утепления жилых домов, так как он не позволяет кровельным балкам дышать.

Опасна ли пенопластовая изоляция?

Хотя изоляция распыляемой пеной применяется в более чем 50% домов в Северной Америке и широко используется в Соединенном Королевстве, известно, что она оказывает негативное воздействие на здоровье. Это в основном основано на более старых методах изоляции, таких как полиуретан, и современных альтернативах изоляции, таких как LogicFoam, которые предлагают экономичную альтернативу, улучшающую качество воздуха.

Основные опасности и токсичность старых составов распыляемой пены включают:

  • Астма
  • Сенсибилизация
  • Поражение легких
  • Другие респираторные заболевания и проблемы с дыханием

Современные методы изоляции, такие как LogicFoam, улучшают качество воздуха в помещении, предотвращая попадание переносимых по воздуху аллергенов. Информацию об опасностях полиуретана SFI можно найти здесь.

Узнайте больше здесь.

Большая проблема: изоцианаты

Изоцианаты вызвали ключевую проблему, с которой люди спорят, когда речь заходит о безопасности и токсичности изоляции из напыляемой пены. Изоцианаты представляют собой класс высокореактивных химических веществ, формула которых позволяет создать соединение, широко используемое в промышленности, коммерции и розничной торговле.

Как компания, одобренная BBA, мы обеспечиваем правильное применение наших продуктов, обеспечивая правильную вентиляцию, применение и методы повторного использования, чтобы обеспечить безопасную жилую среду.

Следует ли опасаться газообразования при распылении пены?

После завершения 24-часового процесса «отверждения» можно не беспокоиться об «выделении газов» монтажной пены. В течение этого периода ваш подрядчик посоветует вам не приближаться к месту установки в течение как минимум 24 часов.

После завершения ваш дом безопасен для повторного проживания, без риска вредных запахов или токсичности, если установка выполняется лицензированным специалистом Home Logic.

Как упоминалось выше, после нанесения продукта ваш подрядчик по распылению пены посоветует вам не приближаться к месту установки в течение как минимум 24 часов, чтобы изоляция полностью затвердела.

После того, как изоляция из напыляемой пены Home Logic полностью «отвердеет», химические вещества становятся инертными и совершенно безвредными для домовладельца.

При нанесении пена расширяется до 100 раз по сравнению с первоначальным размером; явление, за которым интересно наблюдать, и оно не слишком отличается от пирога, поднимающегося во время выпечки в духовке. После отстаивания он имеет слегка «губчатую» текстуру без токсичных летучих органических соединений после начала периода осаждения.

Современная и эффективная изоляция, пена LogicFoam с открытыми порами имеет самый низкий потенциал глобального потепления (GWP) 1,

Токсична ли пенопластовая изоляция для домашних животных?

Нет, через 24 часа после нанесения напыляемой пены токсичных химикатов не будет, так как газ сделан инертным. Это делает абсолютно безопасным присутствие людей или животных в зоне распыления.

Тем не менее, несмотря на то, что установщики приложат все усилия, чтобы удалить все излишки пены для распыления, пожалуйста, проверьте, так как животные могут жевать мягкую пену, вызывая проблемы со здоровьем.

Все ли аэрозольные пены одинаковы с точки зрения безопасности?

Хотя строительные блоки пенополиуретанов аналогичны, конкретные материалы, используемые в их рецептуре, могут различаться, что напрямую влияет на то, будут ли по-прежнему присутствовать выбросы или запахи после установки.

С точки зрения здоровья, они намного безопаснее, чем старые пены, которые обычно состоят из формальдегида. Использование таких пен больше не является обычной практикой.

Насколько токсичны другие изоляционные материалы?

Хотя традиционная полиуретановая изоляция считается токсичной, существуют альтернативы, такие как LogicFoam, современная и эффективная изоляция из напыляемой пены, которая достигла самого низкого потенциала глобального потепления (ПГП) 1,9. 0003

Существуют и другие альтернативы, такие как переработанная изоляция и изоляция из стекловолокна, которые считаются эффективными, но не обеспечивают таких же значений R, как LogicFoam.

Все лицензированные подрядчики LogicFoam обеспечат полную защиту вас и вашей семьи до, во время и после нанесения

Что Агентство по охране окружающей среды может сказать о токсичности распыляемой пены?

Согласно EPA:

«Домовладельцы, подвергающиеся воздействию изоцианатов и другие аэрозольные пенообразователи в парах, аэрозолях и пыли во время или после процесса установки «создают риск развития астмы, сенсибилизации, повреждения легких, других проблем с дыханием и дыхания, а также раздражения кожи и глаз».

Как мой подрядчик защитит меня от воздействия химических веществ?

Все лицензированные подрядчики LogicFoam обеспечат вам полную защиту до, во время и после применения продукта.

Во время нанесения ваш установщик посоветует вам не входить в зону установки, а также в течение 24 часов после завершения процесса «отверждения».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*