Производство стекла химия: Из чего делают стекло. Виды, способы изготовления стекла ☑️ EraGlass
- Производство стекла — презентация онлайн
- СТЕКЛО | Энциклопедия Кругосвет
- СВОЙСТВА
- ПРОИЗВОДСТВО СТЕКЛА
- Сырьевые материалы.
- Типы стекол.
- Кварцевое стекло.
- Натриево-силикатные стекла.
- Известковые стекла.
- Свинцовые стекла.
- Боросиликатные стекла.
- Другие стекла.
- Варка.
- Переработка в изделия.
- Последние достижения.
- Плоское стекло.
- Стеновые стеклоблоки.
- Стекловолокно.
- Специальное кварцевое стекло.
- Пеностекло.
- Металлизация.
- Проводящие покрытия.
- Электротехнические изделия.
- Светочувствительные стекла.
- Стеклокерамика.
- промышленное стекло | Britannica
- Стекло | Fun Science
Производство стекла — презентация онлайн
Похожие презентации:
Стекло. История стекла. Свойства стекла
Стекло. Виды стекол
Стеклянные товары. Основные сырьевые материалы для производства стекла
Стекла. Структура и свойства
Стекло, его виды и классификация
Неорганические строительные материалы. Стекло
Естественные и искусственные стекла
Технология оптического стекла
Стекло и его свойства
Стекло и хрусталь. Химический состав
Производство
стекла
{
Презентация по химии
Вещество и материал, один из самых
древних и, благодаря разнообразию своих
свойств, — универсальный в практике
человека. Температура варки стёкол, от 300
до 2500 °C, определяется компонентами
этих стеклообразующих
расплавов. Прозрачность не является общим
свойством для всех видов существующих как
в природе, так и в практике стёкол.
Стекло
Изготовление стекла происходит на основе флоатпроцесса: расплавленная стекломасса непрерывно
подается из ванной печи на расплав олова. Находясь на
нем, стекло формируется по толщине и ширине. Затем
стекло поступает в печь отжига, где оно проходит процесс
охлаждения. После отжига лента стекла разрезается по
размерам для дальнейшей отгрузки. Сам процесс
изготовления стекла — непрерывный.
Благодаря использованию в составах различных
химических соединений, стекла обладают различными
свойствами, что позволяет создавать оптические эффекты
(игра света в едва заметных гранях, создания эффекта
оплывшего от времени стекла). Стекло бывает как
бесцветным, так и цветным, а также матированным.
Толщина стекла обычно находится в пределах от 4 до 6мм.
Изготовление
Сырьём для производства служат чистый
кварцевый песок, сода и известняк. Эти
вещества тщательно перемешивают и
подвергают сильному нагреванию(1500С)
Сырьё
Выделяют пять функций стекла, согласно
которым и классифицируют виды стекол.
Это:
теплоизоляция в зимнее время
защита комнаты от перегрева в летнее время
звукоизоляция
обеспечение безопасности
эстетическая функция
Функции стекла
Кварцевое
Боратное
Силикатное
Органическое
Элементарное
Оксидное
Растворимое
Виды стекла
Кварцевое стекло получают плавлением
кремнезёмистого сырья высокой чистоты
(обычно кварцит, горный хрусталь), его
химическая формула — SiO2. Кварцевое
стекло может быть также природного
происхождения, образующееся при
попадании молнии в залежи кварцевого
песка. Оптическое стекло — применяют для
изготовления линз, призм, кювет и др.
Кварцевое стекло
Стеклообразный борный ангидрит легко
получается путем простого плавления
борной кислоты при 1200-1300оС. Благодаря
отличным электроизоляционным качествам
и сравнительной легкоплавкости боратные
стекла широко применяются в
электротехнике. Некоторые боратные стекла
представляют интерес для оптотехники.
Боратное стекло
Главнейшее значение в практике принадлежит
классу силикатных стекол. С ними не могут
сравниться по распространенности в быту и в
технике никакие другие классы стекол.
Решающие преимущества силикатных стекол
обусловлены их дешевизной, экономической
доступностью, высокой химической
устойчивостью в наиболее распространенных
химических реагентах и газовых средах, высокой
твердостью, сравнительной простотой
промышленного производства.
Силикатное стекло
Применяется как листовое стекло в авиа- и
машиностроении, для изготовления
бытовых изделий, средств защиты в
лабораториях, строительстве и архитектуре,
приборостроении, остекления парников,
куполов, окон, в медицине -протезы, линзы
в оптике, труб в пищевой промышленности
и др.
Органическое стекло
Элементарными называются стекла,
состоящие из атомов одного элемента. В
стеклоподобном состоянии можно получить
серу, селен, мышьяк, фосфор. Имеются
сведения о возможности остеклования
теллура и кислорода. При охлаждении 11оС дает каучукоподобный прозрачный
продукт, нерастворимый в сероуглероде.
Элементарное стело
При определении класса учитывается
природа стеклообразующего оксида,
входящего в состав стекла оксид бора, оксид
кремния, оксид фосфора. Многие оксиды
переходят в состояние стекла лишь в
условиях скоростного охлаждения оксид
мышьяка, оксид сурьмы, оксид ванадия,
либо сами по себе не стеклуются оксид
алюминия, оксид вольфрама, однако в
комбинациях стеклообразующие свойства
резко усиливаются.
Оксидное стекло
Применяют для изготовления кислотоупорных
цементов и бетонов, для пропитки тканей,
изготовления огнезащитных красок, силика-геля,
для укрепления слабых грунтов и др.
Стекловолокно — искусственное волокно широко
применяется в химической промышленности
для фильтрации горячих кислых и щелочных
растворов, очистки горячего воздуха и газов;
матариалы из стекловолокна применяются в
строительстве и при коррозионно-стойких
трубопроводов, при изготовлении
электроизоляции и др.
Растворимое стекло
Подготовил: студент 712группы
Грибков Александр
Проверила: учитель химии и биологии
Пахомова Наталья Валерьевна
English
Русский
Правила
СТЕКЛО | Энциклопедия Кругосвет
Содержание статьи
- СВОЙСТВА
- ПРОИЗВОДСТВО СТЕКЛА
- Сырьевые материалы.
- Типы стекол.
- Кварцевое стекло.
- Натриево-силикатные стекла.
- Известковые стекла.
- Свинцовые стекла.
- Боросиликатные стекла.
- Другие стекла.
- Варка.
- Переработка в изделия.
- Последние достижения.
- Плоское стекло.
- Стеновые стеклоблоки.
- Стекловолокно.
- Специальное кварцевое стекло.
- Пеностекло.
- Металлизация.
- Проводящие покрытия.
- Электротехнические изделия.
- Светочувствительные стекла.
- Стеклокерамика.
СТЕКЛО. Любой материал, который при охлаждении переходит из жидкого состояния в твердое без кристаллизации, правильно называть стеклом независимо от его химического состава. Под это определение подпадают как органические, так и неорганические материалы. Однако стекла, используемые в широком обиходе, почти всегда изготавливают из неорганических оксидов.
СВОЙСТВА
Широкая употребительность стекла обусловлена неповторимым и своеобразным сочетанием физических и химических свойств, не свойственным никакому другому материалу. Например, без стекла, вероятно, не существовало бы обычного электрического освещения в том виде, в каком мы его знаем. Не было найдено никакого другого материала для колбы электрической лампы, который объединял бы в себе такие важные качества, как прозрачность, теплостойкость, механическая прочность, хорошая свариваемость с металлами и дешевизна. Аналогично, прецизионные оптические элементы микроскопов, телескопов, фотоаппаратов, кино- и видеокамер и дальномеров в отсутствие стекла, вероятно, не из чего было бы изготовить. Все указанные выше свойства в конечном счете связаны с тем фактом, что стекла являются аморфными, а не кристаллическими материалами.
При комнатной температуре стекло представляет собой твердый хрупкий материал и обычно остается таковым при повышении температуры вплоть до 400° С. Однако при дальнейшем нагреве стекло постепенно размягчается, вначале почти незаметно, пока, наконец, не становится вязкой жидкостью. Процесс перехода стекла из твердого состояния в жидкое не характеризуется сколько-нибудь определенной температурой плавления. При правильном охлаждении жидкого стекла этот процесс происходит в обратном направлении также без кристаллизации (деаморфизации).
ПРОИЗВОДСТВО СТЕКЛА
Сырьевые материалы.
Смесь, или шихта, из которой приготавливается стекло, содержит некоторые главные материалы: кремнезем (песок) почти всегда; соду (оксид натрия) и известь (оксид кальция) обычно; часто поташ, оксид свинца, борный ангидрид и другие соединения. Шихта также содержит стеклянные осколки, остающиеся от предыдущей варки, и, в зависимости от обстоятельств, окислители, обесцвечиватели и красители либо глушители. После того как эти материалы тщательно перемешаны друг с другом в требуемых соотношениях, расплавлены при высокой температуре, а расплав охлажден достаточно быстро, чтобы воспрепятствовать образованию кристаллического вещества, получается целевой материал – стекло.
Хотя песок внешне не похож на стекло, большинство распространенных стекол содержат от 60 до 80 мас.% песка, и этот материал как бы образует остов, относительно которого протекает процесс стеклообразования. Стеклообразующий песок – это кварц, наиболее распространенная форма кремнезема. Он подобен песку с морского пляжа, из которого, однако, удалено большинство посторонних примесей. Оксид натрия Na2O обычно вводится в шихту в виде кальцинированной соды (карбоната натрия), однако иногда используется бикарбонат или нитрат натрия. Все эти соединения натрия разлагаются до Na2O при высоких температурах. Калий применяется в форме карбоната или нитрата. Известь добавляется в виде карбоната кальция (известняка, кальцита, осажденной извести) либо иногда в виде негашеной (CaO) или гашеной (Ca(OH)2) извести. Главные источники монооксида бора для производства стекла – бура и борный ангидрид. Оксид свинца обычно вводится в шихту в виде свинцового сурика или свинцового глета.
Типы стекол.
Кварцевое стекло.
Стекло, состоящее из одного только кремнезема, правильно называть плавленым кварцем или кварцевым стеклом. Это простейшее стекло по своим химическим и физическим свойствам, и оно обладает многими необходимыми параметрами: не подвергается деформированию при температурах вплоть до 1000° С; его коэффициент теплового расширения очень низок, и поэтому оно обладает стойкостью к термоудару при резком изменении температуры; его объемное и поверхностное удельные электрические сопротивления весьма высоки; оно отлично пропускает как видимое, так и ультрафиолетовое излучение. К сожалению, кварцевое стекло с большим трудом плавится и перерабатывается в изделия. Высокая стоимость кварцевого стекла ограничивает его применение изделиями специального назначения, такими, как химико-лабораторная посуда, ртутные лампы и компоненты оптических систем, работающие при высоких температурах.
Натриево-силикатные стекла.
Натриево-силикатные стекла получают сплавлением кремнезема (оксида кремния) и соды (оксида натрия). Смесь 1 части оксида натрия (Na2O) с 3 частями оксида кремния (SiO2) плавится при температуре, на ~900° С более низкой, чем чистый кремнезем; оксид натрия действует как сильный флюс. К сожалению, такие стекла растворяются в воде, и хотя они чрезвычайно важны для промышленного применения, из них нельзя изготавливать большинство изделий.
Известковые стекла.
Древние стеклоделы обнаружили, что водорастворимость натриево-силикатных стекол можно устранить добавлением извести. Анализы древних стекол показывают поразительное сходство их химического состава с составом современных стекол, хотя современные стеклоделы, в отличие от древних, знают также, что добавление небольших количеств других оксидов, например оксида магния MgO, оксида алюминия Al2O3, оксида бария BaO, дополнительно повышает качество стекла. Если главные ингредиенты шихты – оксиды Na2O, CaO и SiO2, то получаемые стекла называются натриево-известково-силикатными, натриево-известковыми или просто известковыми стеклами независимо от присутствия других составляющих. С небольшими изменениями в составе эти стекла широко используются для изготовления листового и зеркального стекла, стеклотары, колб электроламп и многих других изделий. Эти стекла относительно легко плавятся и перерабатываются в изделия, а сырьевые материалы для них недороги. Вероятно, 90% производимого сегодня стекла является известковым.
Свинцовые стекла.
Свинцовые стекла изготавливают сплавлением оксида свинца PbO с кремнеземом, соединением натрия или калия (содой или поташем) и малыми добавками других оксидов. Эти свинцово-натриево(или калиево)-силикатные стекла дороже известковых стекол, однако они легче плавятся и проще в изготовлении. Это позволяет использовать высокие концентрации PbO и низкие – щелочного металла без ущерба для легкоплавкости. Такой состав поднимает диэлектрические свойства материала до такого уровня, что делает его одним из лучших изоляторов для использования в радиоприемниках и телевизионных трубках, в качестве изолирующих элементов электроламп и конденсаторов. Высокое содержание PbO дает высокие значения показателя преломления и дисперсии – двух параметров, весьма важных в некоторых оптических приложениях. Те же самые характеристики придают свинцовым стеклам сверкание и блеск, украшающие самые утонченные изделия столовой посуды и произведения искусства. Большинство стекол, называемых хрусталем, являются свинцовыми.
Боросиликатные стекла.
Стекла с высоким содержанием SiO2, низким – щелочного металла и значительным – оксида бора B2O3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления. В 1915 фирма «Корнинг гласс уоркс» начала производить первые боросиликатные стекла под торговым названием «пирекс». В зависимости от конкретного состава стойкость к термоудару таких стекол в 2–5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике. Такое сочетание свойств сделало возможным производство новых стеклянных изделий, в том числе промышленных труб, рабочих колес центробежных насосов и домашней кухонной посуды. Зеркало крупнейшего телескопа в мире на г. Паломар в Калифорнии изготовлено из стекла сорта «пирекс».
Другие стекла.
Существуют много других типов стекол специального назначения. Среди них – алюмосиликатные, фосфатные и боратные стекла. Производятся также стекла с разнообразной окраской для изготовления линз, светофильтров, осветительного оборудования, косметической тары и домашней утвари.
Варка.
Стекло варится путем выдерживания смеси сырьевых материалов при высоких температурах (от 1200 до 1600° С) в течение продолжительного времени – от 12 до 96 ч. Такой режим обеспечивает протекание необходимых химических реакций, в результате чего сырьевая смесь приобретает свойства стекла.
В древние времена варка производилась в глиняных горшочках глубиной и диаметром 5–7 см. В настоящее время применяются шамотные горшки гораздо больших размеров, вмещающие от 200 до 1400 кг шихты, для производства оптического, художественного и других видов стекла специального состава. В одной печи могут выдерживаться от 6 до 20 горшков. Большие массы стекла варятся в ванных печах непрерывного действия. Постоянный уровень расплавленного стекла в ванне поддерживается путем непрерывной подачи шихты на одном из концов установки и извлечения готового продукта с той же скоростью из другого конца; в таком режиме некоторые стекловаренные печи работали в течение пяти лет, прежде чем возникала необходимость в ремонте. Крупные печи, иногда вмещающие несколько сот тонн расплавленного стекла, приспосабливаются к интенсивному механическому производству. Как горшковые, так и ванные печи обычно нагреваются сжиганием природного газа или мазута.
Переработка в изделия.
В отношении переработки в изделия стекло отличается от большинства других материалов двумя особенностями. Во-первых, оно должно перерабатываться, будучи чрезвычайно горячим и полужидким. Во-вторых, операции формования должны выполняться за короткие периоды, длящиеся от нескольких секунд до, самое большее, нескольких минут, – за это время стекло охлаждается до состояния твердого тела. При необходимости дальнейшей обработки стекло вновь должно быть нагрето. В расплавленном состоянии стекло может быть вытянуто в длинные нити, обладающие гибкостью при высокой температуре, извлечено из общей массы погруженным в него инструментом в виде небольшого сгустка, подцеплено концом стеклодувной трубки либо разлито в формы для получения отливок или прессовок. Поскольку стекло легко сплавляется с металлом, отдельные части сложного изделия соединяются друг с другом после повторного нагрева, благодаря которому также обеспечивается чистота соединяемых поверхностей. Вращение заготовки с постоянной скоростью при обработке придает изделию осесимметричную форму. Готовые стеклянные изделия подвергаются процессу отжига со стадией медленного охлаждения для релаксации напряжений. За все время производства стекла были созданы четыре главных метода его обработки: выдувание, прессование, прокатка и литье. Первые три метода используются как в мелкосерийном ручном, так и в непрерывном машинном производстве. Литье, однако, трудно приспособить к крупносерийному производству.
Последние достижения.
В разработке средств механизации для быстрого и дешевого производства стеклянных изделий в 20 в. было достигнуто больше успехов, чем за всю предыдущую историю стекольного дела. В 1900-х годах, хотя уже были заложены основы механизации технологических процессов и массового производства, стекло все еще использовалось главным образом для получения только пяти видов изделий: бутылок, столовой посуды, окон, линз и украшений. С тех пор стекло стало производиться многими предприятиями и нашло применение буквально в тысячах различных областей. Теперь стекло легко приспосабливают к требованиям заказчика. Оно может быть прозрачным, полупрозрачным или непрозрачным, окрашенным или бесцветным. Некоторые виды стекла так же легки, как алюминий, а другие так же тяжелы, как чугун; есть стекла, по прочности превосходящие сталь. Из них изготавливаются волокна в 10 раз тоньше человеческого волоса и листы, столь же тонкие, как бумага. Стеклянные изделия могут быть крошечными, хрупкими и легкими или такими массивными, как сплошное 508-сантиметровое, 20-тонное зеркало Паломарского телескопа.
Плоское стекло.
В течение и сразу после Первой мировой войны были разработаны новые и полностью непрерывные методы изготовления как оконного, так и зеркального стекла. В 1928 было создано многослойное безосколочное стекло для автомобилей. Вскоре после этого было освоено производство закаленного плоского стекла путем термообработки (закалки с высоким отпуском) твердых полированных листов. Этот процесс повышает прочность в несколько раз и дает продукт с исключительно высокими гибкостью и стойкостью к истиранию и всем видам механического и теплового удара. Когда такое стекло разбивается, оно распадается не на длинные, острые осколки, как обычное стекло, а на маленькие округлые кусочки, которые относительно безвредны. Отпуск оказывается эффективным при упрочнении не только плоского стекла, но и кухонной посуды, мерного стекла, линз защитных очков и круглых колб светильников. Стеклопакеты, заменяющие вставные оконные переплеты, – сравнительно новая разработка конструкции с плоским стеклом. Они состоят из двух или более листов стекла, герметично соединенных по периметру рамкой. Пространство между листами заполняют очищенным и осушенным воздухом. По сравнению с одинарным остеклением стеклопакеты уменьшают теплопотери почти на 50% и надолго избавляют от проблем, связанных с применением наружного оконного переплета, проникновением пыли и конденсацией влаги.
Стеновые стеклоблоки.
Производство стеновых стеклоблоков и стекловолокна началось в 1931. Трудно вообразить два других вида стеклянных изделий, столь непохожих друг на друга. Стеновые стеклоблоки массивны и изготовляются сваркой двух прессованных полублоков с образованием герметической полости между ними. Такие элементы монтируются при строительстве с использованием обычных инструментов и материалов. Получаемые из них «стены дневного света» пропускают большую часть падающего на них солнечного излучения, но уменьшают его яркость, обеспечивают хорошую теплоизоляцию и практически исключают конденсацию влаги. Эти полезные свойства обусловили широкое использование стеновых стеклоблоков как элементов строительных конструкций.
Стекловолокно.
В отличие от бытового стекла стекловолокно обычно изготавливается в форме нитей диаметром меньше 1 мкм. Поскольку каждое волокно представляет собой, по существу, сплошной стеклянный стержень, в объеме оно обладает всеми свойствами стекла. Стекловолокно термостойко и негорюче. Оно не поглощает влаги, не гниет и не подвержено химическому разложению. Оно атмосферо-, кислото-, масло- и коррозионностойко, а также не проводит электричества. Из стекловолокна можно изготавливать нити, ленты, оплетки и корд. Из несколько более толстых, коротких волокон получают упругую ватоподобную массу, называемую стекловатой. В такой форме стекловолокно – отличный теплоизолятор. Различные виды стекловолокна в сочетании с асбестом, слюдой, пластмассами и силиконами дают превосходные композиционные материалы. Действительно, материалы, состоящие из параллельных стеклянных нитей, внедренных в сложный полиэфир или другую матрицу, по прочности на единицу массы могут быть намного прочнее обычных конструкционных материалов, включая сталь, алюминий, магний и титан. Армированные стекловолокном пластмассы этого типа теперь широко используются для изготовления деталей самолетов и ракет, труб, резервуаров, корпусов лодок и строительных панелей. Промышленность стекловолокон выросла с удивительной быстротой ввиду широкого применения этого вида стекла в композиционных материалах.
Специальное кварцевое стекло.
В 1939 был изобретен еще один замечательный вид стекла, названный 96%-м кварцевым стеклом. Этот продукт по своим свойствам практически эквивалентен чистому плавленому кварцу, однако он может производиться дешевле и с большим разнообразием форм и размеров. Стойкость к термоудару этого вида стекла настолько велика, что после нагрева до точки размягчения его можно сразу же опустить в холодную воду, не вызвав разрушения. Удельное электрическое сопротивление и химическая стойкость этого вида стекла также весьма высоки. Некоторые разновидности 96%-го кварцевого стекла обладают исключительно высоким пропусканием в середине ультрафиолетовой области спектра, что позволяет использовать такое стекло в солнечных и бактерицидных лампах, лабораторном оборудовании и специальных электротехнических изделиях.
Пеностекло.
Пеностекло – еще один продукт изобретательности стеклоделов – по структуре похоже на хлеб и может распиливаться на куски нужного размера. Разработанное в 1940, это стекло так мало весит, что не тонет в воде, и все же является жестким, не горит и не выделяет запахов. Такая аномалия свойств создается после смешения тонко измельченных кокса и стекла и нагрева смеси до высокой температуры. Смесь мучнистого вида расплавляется, превращаясь в черную пену, которая заполняет объем формы и потом застывает. В результате получается твердый ячеистый материал с сотнями тысяч заполненных воздухом изолированных ячеек на 1 дм3. После снятия форм блоки пеностекла разрезаются до нужных размеров. Этот замечательный продукт весит примерно столько же, сколько весит пробка, и во время Второй мировой войны использовался в качестве заменителя пробки, а также пробковой древесины, пористой резины и капка. Как и пробка, пеностекло – отличный изолятор. Однако в отличие от пробки на него не влияют сырость и конденсация влаги, так что оно очень подходит для обкладки холодильных камер и бытовых холодильников. Пеностекло в равной мере успешно может применяться и для высокотемпературной теплоизоляции вплоть до 425° С, поскольку оно не только не горит, но и заглушает огонь. Новый сорт пеностекла содержит 99% кремнезема и может использоваться при температуре до 1200° С.
Металлизация.
На поверхность стекла можно наплавить тонкий слой металла; при этом соединение получается настолько прочным, что к металлическому покрытию можно припаять довольно массивные металлические детали. Этот метод широко применяется в радио- и электротехнической промышленности.
Проводящие покрытия.
Был открыт целый ряд необычных применений стекла в связи с тем, что ему можно придать свойство поверхностной проводимости. Это достигается напылением на поверхность стеклянного изделия тонкого, прозрачного, почти невидимого слоя оксида металла. Такое покрытие весьма долговечно и имеет поверхностное сопротивление в пределах от 10 до 100 Ом/см2. При обычных температурах можно использовать известковое стекло, а при высоких – боросиликатное. Изготовленные из такого стекла панели лучистого нагрева могут работать при температурах до 350° С. Подобные панели – хороший источник энергии длинноволнового инфракрасного излучения, которое большинство веществ и сред поглощает с эффективностью 90% и более. Таким способом изготавливаются настольные стеклянные излучатели и вспомогательные нагреватели для помещений. Проводящие покрытия, нанесенные на ветровые стекла самолетов, сохраняют их теплыми и свободными от льда.
Электротехнические изделия.
Стеклянные колбы широко используются в качестве оболочек для ламп накаливания и электронно-лучевых трубок. Проволочные резисторы, трансформаторы, конденсаторы, реле и переключатели могут заключаться в оболочки из отпущенного стекла с выводами через стеклянные изоляторы. Крупные проходные изоляторы массой до 22 кг, рассчитанные на сильные токи и высокие напряжения, изготавливаются путем центробежной отливки стекла вокруг металлических втулок. С применением стекла изготавливаются конденсаторы как постоянной, так и переменной емкости. В конденсаторах постоянной емкости используется листовое стекло толщиной до 0,025 мм. Конденсатор переменной емкости состоит из изготовленной с жестким допуском стеклянной трубки, часть внешней поверхности которой металлизируется для образования одной обкладки. Внутрь трубки вставляется стержень из латуни или инвара, образующий вторую обкладку. Стеклянные трубки или стержни с нанесенной на них углеродной, металлической или металлооксидной пленкой используются в качестве резисторов.
Светочувствительные стекла.
В 1947 было обнаружено, что стекла некоторых составов при воздействии ультрафиолетового излучения образуют скрытое изображение, которое может быть проявлено путем нагрева стекла чуть выше температуры отжига. Скажем, на стекло можно наложить фотографический негатив и облучить его ультрафиолетом, а потом нагреть стекло; в результате в объеме стекла появится воспроизведенное в цвете изображение. Цвет изображения зависит от вида светочувствительного металла, введенного в шихту. Один из составов дает опаловое стекло такой природы, что разбавленная фтористоводородная кислота протравливает облученную часть раз в пятнадцать быстрее, чем необлученную. Эта огромная разница в растворимостях позволяет осуществлять химическое травление. Таким способом в стекле можно вытравливать отверстия размером меньше половины среднего диаметра человеческого волоса в количестве до 100 тыс. отверстий на 1 см2. Стекла этого типа используются для изготовления световых табло, именных табличек и декоративных плиток, а также в качестве чувствительных элементов дозиметров. После воздействия проникающего излучения некоторые из таких стекол ярко светятся при облучении ультрафиолетовым светом, а другие меняют свой цвет. Интенсивность флуоресценции или степень изменения окраски пропорциональна полученной дозе облучения.
Стеклокерамика.
Это гибридное название относится к материалам, которые вначале были произведены как стекла, а потом во всей своей массе переведены в кристаллическое состояние. Они выпускаются фирмой «Корнинг гласс уоркс» под зарегистрированными торговыми названиями «пирокерамика» и «фотокерамика».
Сырьевые материалы для изготовления стеклокерамики примерно те же, что и для изготовления стекла, однако включают некоторые дополнительные добавки, играющие роль зародышеобразователей. После формования одним из обычных способов – прессования, выдувания или прокатки – изделие нагревается до температуры образования ядер кристаллизации. В 1 см3 изделия образуются миллиарды таких ядер, которые вырастают до мельчайших кристаллов, хотя никакой видимой кристаллизации не происходит. Затем температура повышается, и во всем объеме стеклообразного изделия начинается кристаллизация вокруг кристаллов-зародышей. Процесс продолжается до тех пор, пока растущие кристаллы не наталкиваются друг на друга и вся масса изделия не становится кристаллической за исключением малых областей стеклообразной матрицы на границах кристалла. Температуры переработки, зародышеобразования и кристаллизации зависят от состава стекла. В некоторых случаях образование ядер кристаллизации производится воздействием рентгеновского или ультрафиолетового излучения с последующей термообработкой.
В отличие от обычной керамики, стеклокерамика не имеет пор, а ее кристаллы меньше размером и более однородны. По сравнению со стеклом-основой стеклокерамика тверже, не деформируется до более высоких температур и в несколько раз прочнее. Одним из первых ее применений были обтекатели ракет. Теперь широко используется стеклокерамическая посуда, которую можно переставлять из холодильника прямо на плиту. Лабораторная посуда, цилиндры двигателей и даже шарикоподшипники изготавливаются из стеклокерамики. Эти разработки – главное достижение в технологии стекла. См. также КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ; КЕРАМИКА ПРОМЫШЛЕННАЯ.
промышленное стекло | Britannica
Посмотрите, как супергидрофобная многофункциональная стеклянная поверхность противостоит запотеванию, бликам и самоочищается
Посмотреть все видео к этой статье показывает большую стойкость под воздействием природных элементов. Эти три свойства — блеск, прозрачность и долговечность — делают стекло предпочтительным материалом для таких предметов домашнего обихода, как оконные стекла, бутылки и лампочки. Однако ни одно из этих свойств по отдельности, ни все вместе они не достаточны и даже не необходимы для полного описания стекла. Согласно современным научным представлениям, стекло — это твердый материал, имеющий атомную структуру жидкости. Более подробно, следуя определению, данному в 1932 физика У.Х. Захариасен, стекло представляет собой протяженную трехмерную сеть атомов, образующих твердое тело, в котором отсутствует дальнодействующая периодичность (или повторяющееся упорядоченное расположение), типичное для кристаллических материалов.
Обычно стекло образуется при охлаждении расплавленной жидкости таким образом, что предотвращается упорядочение атомов в кристаллическое образование. Вместо резкого изменения структуры, которое происходит в кристаллическом материале, таком как металл, при его охлаждении ниже точки плавления, при охлаждении стеклообразующей жидкости происходит непрерывное застывание жидкости до тех пор, пока атомы практически не замерзнут. более или менее случайное расположение, подобное тому, которое они имели в жидком состоянии. И наоборот, при приложении тепла к твердому стеклу происходит постепенное размягчение структуры, пока оно не достигнет жидкого состояния. Это монотонно изменяющееся свойство, известное как вязкость, позволяет изготавливать стеклянные изделия в непрерывном режиме, при этом сырье расплавляется до однородной жидкости, доставляется в виде вязкой массы к формовочной машине для изготовления конкретного изделия, а затем охлаждается до твердого состояния. и жесткое состояние.
В этой статье описаны состав и свойства стекла и его образование из расплавленных жидкостей. В нем также описываются процессы промышленного производства стекла и формовки стекла, а также рассматривается история производства стекла с древних времен. При этом основное внимание в статье уделяется составу и свойствам оксидных стекол, которые составляют основную часть товарного тоннажа стекла, а также традиционным методам производства стекла методом термоплавления или плавления стекла. Однако внимание также уделяется другим неорганическим стеклам и менее традиционным производственным процессам.
Подробное описание физики стеклообразного состояния см. в статье Аморфное твердое тело. Полное описание различных художественных применений стекла см. Витражи и изделия из стекла .
Составы стекла и применения
Из различных семейств стекла, представляющих коммерческий интерес, большинство основано на кремнеземе или двуокиси кремния (SiO 2 ), минерале, который в большом количестве встречается в природе, особенно в кварце и прибрежных песках. Стекло, изготовленное исключительно из кварца, известно как кварцевое стекло или стекловидный кварц. (Его также называют плавленым кварцем, если его получают путем плавления кристаллов кварца.) Кварцевое стекло используется там, где требуются высокая рабочая температура, очень высокая стойкость к тепловому удару, высокая химическая стойкость, очень низкая электропроводность и хорошая прозрачность в ультрафиолетовом излучении. Однако для большинства стеклянных изделий, таких как контейнеры, окна и лампочки, основными критериями являются низкая стоимость и хорошая долговечность, и стекла, которые лучше всего соответствуют этим критериям, основаны на системе натрий-известь-кремнезем. Примеры этих стекол показаны в таблице Состав репрезентативных оксидных стекол.
Состав репрезентативных оксидных стекол | ||||||
---|---|---|---|---|---|---|
стекловидный кварц | печные трубы, кремниевые плавильные тигли | 100,0 | — | — | — | — |
натриево-известковый силикат | окно | 72,0 | 14. 2 | 10,0 | 0,6 | 2,5 |
контейнер | 74,0 | 15,3 | 5.4 | 1,0 | 3,7 | |
лампочка и трубка | 73,3 | 16,0 | 5.2 | 1,3 | 3,5 | |
посуда | 74,0 | 18,0 | 7,5 | 0,5 | — | |
боросиликат натрия | химическая посуда | 81,0 | 4,5 | — | 2. 0 | — |
свинцово-щелочной силикат | свинцовый «хрусталь» | 59.0 | 2.0 | — | 0,4 | — |
телевизионная воронка | 54,0 | 6,0 | 3.0 | 2.0 | 2.0 | |
алюмосиликат | стеклянная галогенная лампа | 57,0 | 0,01 | 10,0 | 16,0 | 7,0 |
стекловолокно «Е» | 52,9 | — | 17,4 | 14,5 | 4. 4 | |
оптический | «корона» | 68,9 | 8,8 | — | — | — |
стекловидный кварц | печные трубы, кремниевые плавильные тигли | — | — | — | — | — |
натриево-известковый силикат | окно | — | — | — | — | — |
контейнер | — | след | — | 0,6 | — | |
лампочка и трубка | — | — | — | 0,6 | — | |
посуда | — | — | — | — | — | |
боросиликат натрия | химическая посуда | 12,0 | — | — | — | — |
свинцово-щелочной силикат | свинцовый «хрусталь» | — | — | 25,0 | 12,0 | 1,5 |
телевизионная воронка | — | — | 23,0 | 8,0 | — | |
алюмосиликат | стеклянная галогенная лампа | 4. 0 | 6,0 | — | след | — |
стекловолокно «Е» | 9.2 | — | — | 1,0 | — | |
оптический | «корона» | 10.1 | 2,8 | — | 8.4 | 1,0 |
После кремнезема многие «натриево-известковые» стекла содержат в качестве основных компонентов соду или оксид натрия (Na 2 O; обычно получают из карбоната натрия или кальцинированной соды) и известь или оксид кальция (CaO; обычно полученный из обожженного известняка). К этой основной формуле могут быть добавлены другие ингредиенты для получения различных свойств. Например, добавляя фторид натрия или фторид кальция, можно получить полупрозрачный, но не прозрачный продукт, известный как опаловое стекло. Еще одним вариантом на основе диоксида кремния является боросиликатное стекло, которое используется там, где требуется высокая стойкость к тепловому удару и высокая химическая стойкость, например, в химической посуде и автомобильных фарах. В прошлом посуда из свинцового «хрусталя» изготавливалась из стекла, содержащего большое количество оксида свинца (PbO), что придавало изделию высокий показатель преломления (отсюда блеск), высокий модуль упругости (отсюда звонкость, или «звонкость»). »), и большой рабочий диапазон температур. Оксид свинца также является основным компонентом стеклянных припоев или герметиков для стекол с низкими температурами обжига.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Другими стеклами на основе кремнезема являются алюмосиликатные стекла, которые занимают промежуточное положение между стекловидным кварцем и более распространенными натриево-известково-кремнеземными стеклами как по термическим свойствам, так и по стоимости; стекловолокна, такие как стекло E и стекло S, используемые в армированных волокном пластмассах и в теплоизоляционной вате; и оптические стекла, содержащие множество дополнительных основных компонентов.
без кремнезема
Оксидные стекла не на основе кремнезема не имеют большого коммерческого значения. Как правило, это фосфаты и бораты, которые в некоторой степени используются в биорассасывающихся продуктах, таких как хирургическая сетка и капсулы с пролонгированным высвобождением.
Неоксидные стекла
Стекла из фторида тяжелых металлов
Из неоксидных стекол фторидные стекла тяжелых металлов (HMFG) имеют потенциальное применение в телекоммуникационных волокнах благодаря их относительно низким оптическим потерям. Однако они также чрезвычайно трудно формируются и имеют низкую химическую стойкость. Наиболее изученной ГМФГ является так называемая группа ZBLAN, содержащая фториды циркония, бария, лантана, алюминия и натрия.
Стекловидные металлы
Другой неоксидной группой являются стекловидные металлы, образованные высокоскоростной закалкой жидких металлов. Возможно, наиболее изученным стеклообразным металлом является соединение железа, никеля, фосфора и бора, которое имеется в продаже как Metglas (торговая марка). Он используется в гибком магнитном экранировании и силовых трансформаторах.
Последний класс неоксидных, некристаллических веществ — это халькогениды, которые образуются при сплавлении халькогенных элементов серы, селена или теллура с элементами из группы V ( , например, мышьяк, сурьма) и группа IV (, например, германий) периодической таблицы. Благодаря своим полупроводниковым свойствам халькогениды нашли применение в устройствах пороговой и запоминающей коммутации, а также в ксерографии. Родственным конечным членом этой группы являются элементарные аморфные твердые полупроводники, такие как аморфный кремний (a-Si) и аморфный германий (a-Ge). Эти материалы являются основой большинства фотогальванических приложений, таких как солнечные элементы в карманных калькуляторах. Аморфные твердые тела имеют жидкостный атомный порядок, но не считаются настоящими стеклами, потому что они не демонстрируют непрерывного перехода в жидкое состояние при нагревании.
В некоторых стеклах можно добиться определенной степени кристаллизации нормально случайной атомной структуры. Стекловидные материалы, обладающие такой структурой, называются стеклокерамикой. Коммерчески используемая стеклокерамика — это стеклокерамика, в которой высокая плотность неориентированных кристаллов одинакового размера была достигнута в объеме материала, а не на поверхности или в отдельных областях. Такие продукты неизменно обладают прочностью, намного превышающей прочность исходного стекла или соответствующей керамики. Яркими примерами являются посуда для приготовления пищи Corning Ware (торговая марка) и зубные имплантаты Dicor (торговая марка).
В дополнение к стеклокерамике полезные изделия из стекла могут быть изготовлены путем смешивания керамических, металлических и полимерных порошков. Большинство продуктов, изготовленных из таких смесей или композитов, обладают свойствами, которые представляют собой комбинации свойств различных ингредиентов. Хорошими примерами композитных изделий являются пластмассы, армированные стекловолокном, для использования в качестве прочных эластичных твердых материалов, а также толстопленочные проводники, резисторы и диэлектрические пасты с заданными электрическими свойствами для упаковки микросхем.
В природе встречается несколько неорганических стекол. К ним относятся обсидианы (вулканические стекла), фульгариты (образованные ударами молнии), тектиты, обнаруженные на суше в Австралазии, и связанные с ними микротектиты со дна Индийского океана, молдавиты из Центральной Европы и стекло Ливийской пустыни из западного Египта. Благодаря своей чрезвычайно высокой химической стойкости под водой композиции микротектита представляют значительный коммерческий интерес для иммобилизации или преобразования опасных отходов.
Стекло | Fun Science
Стекло — очень важное химическое соединение, широко используемое людьми. Сегодня он занял такое важное место в нашей повседневной жизни, что мы не мыслим жить без него. Многие вещи, которыми мы пользуемся в повседневной жизни, сделаны из стекла. Например, стаканы, ламповые лампы, тарелки, электрические лампочки, очки, лабораторное оборудование, молочные бутылки, предметные стекла, зеркала, экраны самолетов и автомобилей состоят из стекла. В Индии он производится в Бангалоре, Вадодаре, Мумбаи, Калькутте, Ферозабаде и Дели.
Химический состав стекла
Обычное стекло, также известное как натриевое или мягкое стекло, представляет собой смесь силиката натрия (Na 2 SiO 3 ), силиката кальция (CaSiO 3 ) и кремнезема. (SiO 2 ), а его химический состав обычно представлен как Na 2 SiO 3 .CaSiO 3 .4SiO 2 или Na 2 O.CaO.6SiO 29011
Сырье для производства стекла
Для производства стекла требуются следующие три вещества:
- Карбонат натрия
- Карбонат кальция
- Силикагель
Производство стекла
Для производства стекла в первую очередь измельчают в порошок карбонат натрия, карбонат кальция и кремнезем и тщательно перемешивают. Гомогенная смесь карбоната натрия, карбоната кальция и диоксида кремния называется партией . Затем несколько осколков стекла, которые называются 9.0425 «стеклобой» добавлены в партию. Целью добавления стеклобоя в шихту является снижение температуры плавления шихты, поскольку стеклобой имеет низкую температуру плавления. Таким образом, добавление стеклобоя в шихту способствует раннему плавлению шихты при производстве стекла. Затем в топке создается температура около 1673 К за счет сжигания топливных газов. При такой высокой температуре шихта плавится, и ее различные компоненты реагируют друг с другом, образуя расплавленное стекло.
Химические реакции, связанные с образованием стекла
Ниже приведены химические реакции, происходящие при образовании стекла:
- Прежде всего кремнезем реагирует с карбонатом натрия с образованием силиката натрия.
- На втором этапе диоксид кремния реагирует с карбонатом кальция с образованием силиката кальция.
- На третьем этапе силикат натрия и силикат кальция, образовавшиеся выше, смешиваются с кремнеземом с образованием стекла.