Теплопроводность и коэффициент теплопроводности: Теплотехнические определения
- Коэффициенты теплопроводности различных материалов
- Теплопроводность | это… Что такое Теплопроводность?
- В чем разница между теплопроводностью и коэффициентом теплопередачи? константа пропорциональности между подводимой теплотой и термодинамической движущей силой теплового потока через единицу площади.
- Теплопроводность и коэффициент расширения
Коэффициенты теплопроводности различных материалов
Каталог
Поддержка
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Теплопроводность | это… Что такое Теплопроводность?
Не следует путать с термическим сопротивлением.
Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.
Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв. м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.
Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.
Содержание
|
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, — коэффициент теплопроводности (иногда называемый просто теплопроводностью), — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где — полная мощность тепловых потерь, — площадь сечения параллелепипеда, — перепад температур граней, — длина параллелепипеда, то есть расстояние между гранями.
Коэффициент теплопроводности измеряется в Вт/(м·K).
Коэффициент теплопроводности вакуума
Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.
Связь с электропроводностью
Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:
где — постоянная Больцмана, — заряд электрона.
Коэффициент теплопроводности газов
Коэффициент теплопроводности газов определяется формулой[2]
Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов — у ксенона).
Обобщения закона Фурье
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]
Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.
Коэффициенты теплопроводности различных веществ
Цветок на куске аэрогеля над горелкой Бунзена
Материал | Теплопроводность, Вт/(м·K) |
---|---|
Графен | (4840±440) — (5300±480) |
Алмаз | 1001—2600 |
Графит | 278,4—2435 |
Карбид кремния | 490 |
Серебро | 430 |
Медь | 382—390 |
Оксид бериллия | 370 |
Золото | 320 |
Алюминий | 202—236 |
Нитрид алюминия | 200 |
Нитрид бора | 180 |
Кремний | 150 |
Латунь | 97—111 |
Хром | 93,7 |
Железо | 92 |
Платина | 70 |
Олово | 67 |
Оксид цинка | 54 |
Сталь | 47 |
Кварц | 8 |
Стекло | 1-1,15 |
КПТ-8 | 0,7 |
Вода при нормальных условиях | 0,6 |
Кирпич строительный | 0,2—0,7 |
Силиконовое масло | 0,16 |
Пенобетон | 0,14—0,3 |
Древесина | 0,15 |
Нефтяные масла | 0,12 |
Свежий снег | 0,10—0,15 |
Вата | 0,055 |
Воздух (300 K, 100 кПа) | 0,026 |
Вакуум (абсолютный) | 0 (строго) |
другие вещества
На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.
Примечания
- ↑ Естествознание. Энциклопедический словарь. Закон Фурье.
- ↑ Исследование теплопроводности газов. // Методические указания.
- ↑ J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
- ↑ C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.
См. также
- Теплопередача
- Конвекция
- Тепловое излучение
- Закон Ньютона — Рихмана
- Уравнение диффузии
Ссылки
- Теплопроводность воды и водяного пара
- Коэффициенты теплопроводности элементов
В чем разница между теплопроводностью и коэффициентом теплопередачи? константа пропорциональности между подводимой теплотой и термодинамической движущей силой теплового потока через единицу площади.
Теплопроводность – это способность конкретного материала проводить через себя тепло. С другой стороны, коэффициент теплопередачи представляет собой константу пропорциональности между тепловым потоком и термодинамической движущей силой потока тепла.
СОДЕРЖАНИЕ
1. Обзор и основные отличия
2. Что такое теплопроводность
3. Что такое коэффициент теплопередачи
4. Теплопроводность и коэффициент теплопередачи в табличной форме
5. Резюме – теплопроводность и коэффициент теплопередачи
Что такое теплопроводность?
Теплопроводность можно описать как способность конкретного материала проводить через себя тепло. Мы можем использовать три способа обозначения этого термина: k, λ или κ. Как правило, материал, состоящий из высокой теплопроводности, демонстрирует высокую скорость теплопередачи. Например, металлы обычно обладают высокой теплопроводностью и очень эффективно проводят тепло. Напротив, изоляционные материалы, такие как пенополистирол, имеют низкую теплопроводность и низкую скорость теплопередачи. Таким образом, мы можем использовать материалы с высокой теплопроводностью для радиаторов и материалы с низкой теплопроводностью для теплоизоляции. Кроме того, «удельное тепловое сопротивление» является обратной величиной теплопроводности.
Математически мы можем выразить теплопроводность как q = -k∇T, где q — тепловой поток, k — теплопроводность, а ∇T — градиент температуры. Мы называем это «законом теплопроводности Фурье».
Мы можем определить теплопроводность как перенос энергии из-за случайного молекулярного движения через температурный градиент. Мы можем отличить этот термин от переноса энергии посредством конвекции и молекулярной работы, потому что он не связан с какими-либо микроскопическими потоками или внутренними напряжениями, выполняющими работу.
При рассмотрении единиц измерения теплопроводности единицами СИ являются «Ватт на метр-Кельвин» или Вт/м·К. Однако в имперских единицах мы можем измерить теплопроводность в BTU/(h.ft.°F). BTU — британская тепловая единица, где h — время в часах, ft — расстояние в футах, а F — температура в градусах Фаренгейта. Кроме того, существует два основных способа измерения теплопроводности материала: стационарный и переходный методы.
Что такое коэффициент теплопередачи?
Коэффициент теплопередачи – это константа пропорциональности между тепловым потоком и термодинамической движущей силой теплового потока. Он также известен как коэффициент пленки или эффективность пленки в термодинамике. Обычно общая скорость теплопередачи для некоторых систем выражается в терминах общей проводимости или коэффициента теплопередачи, который обозначается U.
Коэффициент теплопередачи полезен при расчете теплопередачи путем конвекции или фазового перехода между жидкость и твердое тело. При рассмотрении единиц СИ коэффициент теплопередачи имеет единицы Вт/(м2К) (ватт на квадратный метр по Кельвину).
Более того, коэффициент теплопередачи можно описать как обратную величину теплоизоляции. Мы можем использовать коэффициент теплопередачи для строительных материалов и изоляции одежды.
В чем разница между теплопроводностью и коэффициентом теплопередачи?
Теплопроводность и коэффициент теплопередачи являются важными терминами физической химии. Ключевое различие между теплопроводностью и коэффициентом теплопередачи заключается в том, что теплопроводность связана с пространственной молекулярной диффузией тепла по всей жидкости, тогда как коэффициент теплопередачи представляет собой константу пропорциональности между подведенным теплом и термодинамической движущей силой теплового потока через жидкость. единица площади.
В следующей таблице приведены различия между теплопроводностью и коэффициентом теплопередачи.
Резюме
– теплопроводность и коэффициент теплопередачи
Основное различие между теплопроводностью и коэффициентом теплопередачи заключается в том, что теплопроводность связана с пространственной молекулярной диффузией тепла в жидкости, тогда как коэффициент теплопередачи представляет собой константу пропорциональности между подведенным теплом и термодинамической движущей силой теплового потока через единица площади.
Артикул:
1. «Общие коэффициенты теплопередачи». Инженерный набор инструментов .
Изображение предоставлено:
1. «Простое определение теплопроводности» (CC0) через Commons Wikimedia
.
Теплопроводность и коэффициент расширения
Теплопроводность и коэффициент расширения — RF Cafe
|
|